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A GAS-KINETIC BGK SCHEME FOR THE COMPRESSIBLE NAVIER-STOKES

EQUATIONS*

KUN xut

Abstract. This paper presents an improved gas-kinetic scheme based on the Bhatnagar-Gross-Krook

(BGK) model for the compressible Navier-Stokes equations. The current method extends the previous gas-

kinetic Navier-Stokes solver developed by Xu and Prendergast by implementing a general nonequilibrium

state to represent the gas distribution function at the beginning of each time step. As a result, the requirement

in the previous scheme, such as the particle collision time being less than the time step for the validity of

the BGK Navier-Stokes solution, is removed. Therefore, the applicable regime of the current method is

much enlarged and the Navier-Stokes solution can be obtained accurately regardless of the ratio between

the collision time and the time step. The gas-kinetic Navier-Stokes solver developed by Chou and Baganoff

is the limiting case of the current method, and it is valid only under such a limiting condition. Also, in

this paper, the appropriate implementation of boundary condition for the kinetic scheme, different kinetic

limiting cases, and the Prandtl number fix are presented. The connection among artificial dissipative central

schemes, Godunov-type schemes, and the gas-kinetic BGK method is discussed. Many numerical tests are

included to validate the current method.

Key words, gas-kinetic method, Navier-Stokes equations, Chapman-Enskog expansion, kinetic bound-

ary condition, artificial dissipation, Godunov method

Subject classification. Applied Numerical Mathematics

1. Introduction. There are many approaches for the numerical solution of the compressible Navier-

Stokes equations. Godunov-type schemes solve the Navier-Stokes equations in two steps, i.e., the inviscid

Euler step and the viscous step. The Euler solution is based on an exact or approximate Riemann solvers.

For the viscous part, a central difference method is generally adapted [13, 31].

Based on the gas-kinetic theory, the Navier-Stokes equations can be derived from the Boltzmann equation

using the Chapman-Enskog expansion. Therefore, a Navier-Stokes solver can be equally obtained by solving

the Boltzmann equation, especially the simplified collision models [3, 2]. In the gas-kinetic representation,

all flow variables are moments of a single particle distribution function. Since a gas distribution function

is used to describe both equilibrium and nonequilibrium states, the inviscid and viscous fluxes are obtained

simultaneously. Furthermore, due to the Boltzmann equation, the kinetic method and the Direct Simulation

Monte Carlo (DSMC) method could possibly be matched in the near continuum regime [18]. But, this

does not mean that the gas-kinetic schemes are always superior in comparison with Godunov-type schemes

for the Navier-Stokes solutions. There is also an operator splitting procedure in solving the Boltzmann

equation. In many kinetic schemes, the free transport equation or the collisionless Boltzmann equation, i.e.,

ft +ufx = 0, is used for the flux evaluation across a cell interface. Then, the collision part, i.e., ft = Q(f, f),

is implemented inside each cell. Even though a nonequilibrium gas distribution function f0 can be used
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matics Department, the Hong Kong University of Science and Technology (emaihmakxu@uxmail.ust.hk).



astheinitial conditionfor thefreetransportequation[6],asdiscussedin thecurrentpaperthevalidityof
thiskindof kineticmethodsfortheNavier-Stokesequationsrequires#/p >> At, where # is the dynamical

viscosity coemcient, p is the pressure, and At is the numerical time step. With the introduction of particle

collision time T, the above requirement is equivalent to _- >> At. Note that for any viscosity coemcient #, the

corresponding particle collision time _- can be obtained from a simple kinetic model [22, 17]. The underlying

reason for the above requirement is that the free transport mechanism introduces a numerical collision time

At, which generates a numerical viscosity being proportional to it, i.e., #n _ At [19]. Therefore, the condition

7- >> At means that the physical viscosity coefficient (_ T) should be much larger than the numerical one

(_ At) in order to have an accurate Navier-Stokes solution. As analyzed in this paper, in some situations

the above requirement cannot be satisfied, and the above kinetic scheme can perform poorly.

The BGK scheme differs from the above kinetic method is mainly on the inclusion of particle collision

time _- in the gas evolution stage. Instead of solving the collisionless Boltzmann equation, a collisional BGK

model is solved for the flux evaluation, i.e., ft + ufx = (g - f)/T [1]. As a consequence, the dissipation in the

transport process is controlled by the collision time _- instead of the time step At. As analyzed previously

[42, 37], the BGK scheme does give the Navier-Stokes solution in the region where _- < At. Under such a

situation, the distribution function used for the flux evaluation in the BGK method automatically goes to

a Chapman-Enskog expansion of the BGK equation. The current paper is about the extension of the BGK

scheme by including a non-equilibrium state as the initial condition of the gas distribution function. As

a result, a nearly consistent kinetic method for the Navier-Stokes equations is developed, which is valid in

both _- < At and _- > At cases. In other words, the influence of time step At on the accuracy of the viscous

solution is reduced to a minimal level. Many test cases are included to support the arguments. Also, in the

current paper, the appropriate implementation of boundary condition, Prandtl number fix, and the relation

among the schemes with arificial dissipation, upwinding, and kinetic approximation, will be discussed.

2. A BGK Scheme. The fundamental task in the construction of a finite-volume gas-kinetic scheme

for the compressible flow simulation is to evaluate a time-dependent gas distribution function f at a cell

interface, from which the numerical flux can be obtained.

2.1. Reconstruction. Following van Leer's MUSCL idea [32], a numerical scheme is composed of

an initial reconstruction stage followed by a dynamical evolution stage. At the beginning of each time step

t = 0, cell averaged mass, momentum and energy densities are given. For a higher order scheme, interpolation

techniques must be used to construct the subcell structure. Simple polynomials usually generate spurious

oscillations if large gradients exist in the data. The most successful interpolation techniques known so far

are based either on the TVD, ENO or LED principles[10, 11, 15]. These interpolation techniques can be

applied to the conservative, characteristic or primitive flow variables. In this paper, the reconstruction is

solely applied to the conservative variables. The limiter used is the van Leer limiter. With the cell averaged

conservative variables wj, and their differences s+ = (wj-}-i - wj)/Ax and s_ = (wj - Wj_l)/Ax, the slope

of w in cell j is

18+lls-I
L(s+,s_) = S(s+,s_) is+l + is_l,

where S(s+, s_) -- sign(s+) + sign(s_). After reconstruction, the conservative variable w inside cell j is

distributed linearly,

ej(x) = wj + L(s+, s_)(x - xj),



and the interpolated flow distribution around a cell interface is shown in Fig.(4.1). The BGK scheme is

basically to present a numerical Navier-Stokes solution from the above macroscopic initial condition, where

the inviscid and viscous fluxes are obtained simultaneously in the evolution of the gas distribution function

f.

2.2. BGK Model. Since we are going to use a directional splitting method to solve the 2D BGK

equation. The BGK model in the x-direction can be written as [17]

(2.1) ft + ufx -- g - f,
T

where f is the gas distribution function and g is the equilibrium state approached by f . Both f and g are

functions of space x, time t, particle velocities (u, v), and internal variable _. The particle collision time 7- is

related to the viscosity and heat conduction coefficients. The equilibrium state is a Maxwellian distribution,

g = p(A_)'_--+22e-x((_-v)2+(v-v)2+_2) '
7c

where p is the density, U and V are the macroscopic velocities in the x and y directions, and A is related

to the gas temperature m/2kT. For a 2D flow, the particle motion in the z direction is included into the

internal variable _, and the total number of degrees of freedom K in _ is equal to (5 - 37)/(7 - 1) + 1.

In the equilibrium state, _2 is equal to _2 = _12+ _ + ... + _. The relation between mass p, momentum

(n = pU, m = pV), and energy E densities with the distribution function f is

(2.2) = ¢_fd_, c_ = 1,2,3,4,

where ¢_ is the component of the vector of moments

_2 ---- (¢1,¢2,¢3,¢4) T ---- (1,u,v, _(u 2 + v 2 + _2))T,

and d_ = dudvd_ is the volume element in the phase space with d_ = d_ld_2...d_K. Since mass, momentum

and energy are conserved during particle collisions, f and g satisfy the conservation constraint

(_3) f(. - f)¢_d_ = 0, a = 1, 2, 3, 4,

at any point in space and time. For an easy reference, the formula of the moment of a Maxwellian in 2D are

presented in Appendix A.

For a local equilibrium state with f = g, the Euler equations can be obtained by taking the moments of

¢_ to Eq.(2.1). This yields

/¢a(gt + ugx)d =_= 0, a = 1, 2, 3, 4.

and the corresponding Euler equations in x-direction are

pU

t

pU

pU 2 + p
+

pUV

(E + p)U

=0,



whereE = _p(U1 2 + V 2 + K+22x__and p = p/2A.

On the other hand, to the first order of T, the Chapman-Enskog expansion gives f = g - T(gt -4-ugx).

Taking moments of ¢ again to the BGK equation with the new f, we get

U2gxx )d_,

from which the Navier-Stokes equations with a dynamic viscous coemcient p = Tp can be obtained,

(2.4)

where

pU pU 2 + p =

+ pUV ]

t (E+p)U/

0

81x

82x

83x x

81x = vp[2 0U 2 OU OV ),Ox K+2( x j'

av 0u),
s2_ = Tp( _x + ay

__ K+401ov ou ) 2 ou or)+s3 = p[2u ov K+2u( + ov 4 )]

For the 1D flow, where only U-velocity exists, the above viscous governing equations become

2K T__U
+ pU2 + P = K+-I '1) x l '

t (E+p)U K+37__{1 _ __ 2145 7-_UU ]

where K = (5 - 37)/(7 - 1) and E = 2_lp(u2 ___K+I]2xj. From the above Navier-Stokes equations, an exact

solution of a shock structure can be obtained.

2.3. BGK flow solver. The general solution of f of the BGK model at a cell interface Xj+l/2 and

time t is

(2.5) f(xj+l/2, t, u, v, _) 1 fi t= - g(x', t', u, v, _)e-(t-t')/_dt ' -4-e-t/_fo(xj+l/2 - ut),
T Jo

where x' = Xj+l/2 - u(t - t') is the trajectory of a particle motion and f0 is the initial gas distribution

function f at the beginning of each time step (t = 0). Two unknowns g and f0 must be specified in Eq.(2.5)

in order to obtain the solution f. In order to simplify the notation, Xj+l/2 = 0 will be used in the following

text.

In all previous BGK schemes [37], based on the initial macroscopic variables, see Fig.(4.1), the initial

gas distribution function f0 is assumed to be

l [l+alx], x<_O(2.6) f0= g_[l+a_x], x>_O

where gl and g_ are the Maxwellian distributions at the left and right of a cell interface. The slopes a t and a_

are coming from the spatial derivative of a Maxwellian and have a unique correspondence with the slopes of

the conservative variables. Note that the formulation of a t and a_ will be given later. The basic assumption



in theaboveformulaisthat, evenwithadiscontinuityat thecellinterface,thegasisassumedto stayinan
equilibriumstateonbothsidesofthediscontinuity.Thisassumptionisvalidfor anyflowsimulation,where
thecellsizeAx cannotproperlyresolvetheviscousflowstructure,suchasin theshockcapturingcaseof
theEulerequations.Whenthecellsizeis muchlargerthantheshockthickness,theshockdoesappearas
adiscontinuityandtheflowsin theupstreamanddownstreamstayin equilibriumstates.However,if the
meshsizeis fineenoughto wellresolvethephysicalshockstructure,the initial gasdistributionfunctionf0

should give an accurate description of the real physical situation inside a shock wave, which deviates from an

equilibrium Maxwellian. Therefore, a non-equilibrium state must be used to represent the physical reality

in this case! So, in order to represent a general situation, in the current paper the initial gas distribution

function f0 will be assumed to have the form,

l[l+alx_T(alu+Al)], X_<0(2.7) f0= gr[l+arx_T(a_u+A_)], x_0

where additional terms represent the nonequilibrium states from the Chapman-Enskog expansion of the BGK

model. Again, the detail formulation of (a l, A l, a _, A _) will be given at a later time. Basically, the additional

terms of --T(alu + Al)g I and -T(aru + A_)g _ account for the deviation of a distribution function away from

a Maxwellian. Since the nonequilibrium parts have no direct contribution to the conservative variables, i.e.,

(alu + Al)_l, gl dE = 0,

(2s) f (a u+ A_)¢gldE = 0,

both distributions Eq.(2.6) and Eq.(2.7) represent basically the same macroscopic distributions shown in

Fig.(4.1) I Hence, we can clearly observe that a gas-kinetic approach does have more freedom to describe a

flow. To keep an initial non-equilibrium state in the gas distribution is physically necessary and numerically

possible. It gives a more realistic description of the flow motion in the dissipative region. Many kinetic

schemes have used the Chapman-Enskog distribution function as the initial condition [6, 16].

After having f0, the equilibrium state g around (x = 0, t = 0) is assumed to have the same form as that

proposed in the previous BGK schemes [37],

(2.9) g = go [1 + (1 - H[x])_Ix + H[x]_rx + fi_t],

where H[x] is the Heaviside function defined as

{°1:x>0X °
Here go is a local Maxwellian distribution function located at x -- 0. Even though, g is continuous at x -- 0,

but it has different slopes at x < 0 and x > 0, see Fig.(4.2). In both f0 and g, al,Al,a_,A_,_tl,_t _, and fi_

are related to the derivatives of a Maxwellian in space and time.

The dependence of at,a _, ..., fi_ on the particle velocities can be obtained from a Taylor expansion of a

Maxwellian and have the following form,

a t all+a_u+al3v+al4_(u2+v2+_2 ) t= = a_¢_,

All_ 2 l
z as _)_,n I n_+n_u+nl3v+ 4_( ?t -_- V2 -_- _2) z



1

where (_ 1, 2, 3, 4 and all coefficients I I ..., fi_4 are local constants.= al,a2,

In the reconstruction stage described earlier, we have obtained the distributions fij(x), rhj(x), fij(x),

and Ej(x) inside each cell xj-1/2 < x < Xj+l/2. At the cell interface Xj+l/2, the left and right macroscopic

states are

pj(XjA-1/2)

I ?=Ftj(Xj+i/2) I

\ JEj(XjA-1/2) /

PJ+I(Xj+I/2) I

I_J+I(Xj+I/2) .

_jwl(Xj+l/2)

Ejwi(xjwi/2)

By using the relation between the gas distribution function f and the macroscopic variables (Eq.(2.2)),

around Xj+l/2 we get

(2.10) / gl_)d z = _)j(xjA_i/2) ," / glal_)d z = _)j(xjA_i/2)Ax_-- _)j(xj)

(2.11) /grCdE . f _)jA-1 (Xj+I) -- _)jA-1 (Xj+I/2)_)jq-1 (Xj+l/2 ) J' Ax+

where Ax- = Xj+l/2 - Xj and Ax + = Xj+l -- Xj+I/2. With the definition of the Maxwellian distributions,

K+2

gl =pl(_l) 2 e__((__u_)%(v_._)%_2),
7_

K+2
/_V 2

gV = pV(__) e-X"((u-U")2+(v-v")2+_2),

and from Eq.(2.10) and (2.11), all the parameters in gl and gr can be uniquely determined,

and

where

and

/)/JxJ1J2/ul = I_j(Xjw1/2)/pj(Xj+I/2)

V l Ttj (Xj+I/2 )/pj (Xj+I/2 )

(rl(U r
z

V r
PJ+I(Xj+I/2) I

I_j+I(Xj+I/2)/fij+I(Xj+I/2)

_j+I(Xj+I/2)/_j+I(Xj+I/2 ) '

_l =
(K -_- 2)/)j (Xj+l/2 )

4 (JEj(Xj+l/2) _1 -2_(TFtj(Zj+I/2) -_- Tt2(Xj+l/2) ) /pj(Xj+l/2) )

)_T z

(K -4-2)fij+l (Xj+I/2)

1 --2

4 (EjA-1 (Xj+l/2) - _ (/YtjA-1 (Xj+l/2) + Tt2A-1 (XjA-1/2))/PjA-1 (Xj+I/2))



Once gr is obtained from the above equations, the slope a r in Eq.(2.11) can be computed from,

_)jA-1 (XjA-1) -- _)jA-1 (XjA-1/2) = M[_Z la_ I r r(2.12)
prAx + /a_ / = M_a_,

\a_ /

r r a r ar'_T fromwhere M r = fgr¢_¢zdE/pL The matrix and the direct evaluation of the solution (al,a2, 3, 4]aZ

the above equation are presented in Appendix B. For gl, the matrix M_Z = f gl¢_¢zdE/pl has the same

(al, a2, a3, at4) T in Eq.(2.10) can be obtained similarly using Appendix B. After havingstructure as M_Z, l l l

the terms a I and a r, A l and A r in fo can be found from Eq.(2.8), which are

l l 1/M_zAz = _ atu¢_dE,

1 / aru_b_dE"(2.13) M_zA} = pr

Since M_Z, M_Z, and the right hand sides of the above equations are known, all parameters in A t and A r

can be obtained subsequently using the method in Appendix B again.

After determining fo, the corresponding values of Po, Uo, Vo and Ao in go Eq.(2.9),

K_-]-2

(Xo)2go = Po e -_'°((_-v°)2+(v-v°)2+_2)
:r

can be determined as follows. Taking the limit t --+ 0 in Eq.(2.5) and substituting its solution into Eq.(2.3),

the conservation constraint at (x = Xj+l/2, t = 0) gives

(2.14) /goCdE=wo= / /glCdE+ f fgrCd=_,
u>0 du<Od

where Wo = (po, mo,no, Eo) T. Since gl and gr have been obtained earlier, the above moments can be

evaluated explicitly. Therefore, the conservative variables po,mo, no, and Eo at the cell interface can be

obtained, from which go is uniquely determined. For example, Ao in go can be found from

1 (rno 2 + n_)/po)).
Ao = (K + 2)po/(4(Eo -

Then, _l and _r of g in Eq. (2.9) can be obtained through the relation of

(2.15)

and

(2.16)

Wj+I(Xj+I) -- WO

poAx +

- 0 a_ - 0 -r

= M_Z a_ = M_zaz,

a_4

 o- j(xj) / 4/ o ,
poZx- _ / :

where the matrix 2f/°aZ = f goCa¢zdE/po is known.

found following the procedure in Appendix B.

-r -r _tr _tr_T and -I -I -ITherefore, (al,a2, 3, 4J (al,a2,a3,ctl) T can be



Upto thispoint,wehavedeterminedall parametersin the initial gasdistributionfunctionfo and the

equilibrium state g at the beginning of each time step t = 0. ARer substituting Eq.(2.7) and Eq.(2.9) into

Eq.(2.5), the gas distribution function f at a cell interface can be expressed as

(2.17)

f(xj+l/2, t, u, v, _) -- (1 - e-t/r)g o

+ 0-(-1 + e -t/r) + te -t/r) (61H[u] + 6r(1- H[u]))ugo

+7(t/7 - 1 + e-t/r),4g o

+e -t/r ((1 - u(t + T)al)H[u]g I + (1 -- u(t + T)ar)(1 -- H[u])g _)

+e-t� r (-TAIH[u]g I - TA_(1 - H[u])g_).

The only unknown leR in the above expression is .4. Since both f (Eq.(2.17)) and g (Eq.(2.9)) contain

.4, the integration of the conservation constraint Eq.(2.3) at Xj+l/2 over the whole time step At gives

which goes to

(2.18)

At

-o - 1 / (_IH[u] +_(1 H[u])) goM_A_ ---- Poo ['Ylgo + "Y2?t

+ 73 (H[u]g I + (1 - H[u])g r)

+ "y4U (aIH[u]g I + a_(1 -- H[u])g _)

+ 75 ((a lu + Al)H[u]g I + (a _u + A_)( 1 - H[u])gr)] ¢_d_,

where

7o = At - T(1 - e-At�r),

"Yl -- -(1 - e-At/r)/'yo,

72 = (-At + 2T(1- e -at�r) - Ate -at�r)/70,

73 = (1 - e-at/r)/7o ,

"y4: (ate-At/r--7(1--e-At/r)) /'yo,

75 = 7(1 - e-at/r)/7o.

Since all moments of the Maxwellian on the right hand side of Eq.(2.18) can be evaluated using Appendix

A, Eq.(2.18) can be solved to find (-41,-42,-43,-44) T using Appendix B again.

Finally, the time-dependent numerical fluxes in the x-direction across the cell interface can be computed

as

(2.19) _ u= U f(Xj+l/2, t, U, V, _)d_,
_ v

1 2
_E j_-l/2 _(U -_- V 2 -_- _2)

where f(xj+l/2,t, u,v,_) is given in Eq.(2.17). By integrating the above equation to the whole time step,

we can get the total mass, momentum and energy transport.



2.4. Analysis. In thissection,wearegoingto analyzetheBGKschemepresentedin thelastsection.
Manyissuesrelatedto thekineticlimits,collisiontime,Prandtlnumberfix, boundarycondition,andkinetic
model,will beaddressed.

2.4.1. Navler-StokesSolver. In orderto verifythat Eq.(2.17)correspondsto a Navier-Stokessolu-
tion,let'sconsiderthefollowinglimitingcase.Eq.(2.17)givesexplicitlythetime-dependentgasdistribution
functionf at the cell interface. In a well resolved flow region, such as in a resolved shock layer, the recon-

structed conservative variables in Fig.(4.1) will become approximately a straight line. In such a case, the

distribution function f0 has gl = gr and a I = a r. Consequently, Eq.(2.14) gives go = gl = g_, and Eq.(2.15)

and (2.16) reduce to _l = _ = a I = a _. As a result, fi_ determined in Eq.(2.18) is exactly equal to A l and A _

in Eq.(2.13). Therefore, without any further assumption, the gas distribution function f at a cell interface

becomes

(2.20) f = go [1- T(u_ +fi_) +tfi_],

where -T(u_ + fi_)g0 is exactly the nonequilibrium state in the Chapman-Enskog expansion of the BGK

model [37], and gofiit is the time evolution part of the gas distribution function. The equation (2.20) is

the equation we used for the low Mach number viscous flow calculations [29], where the accuracy of the

above formulation is well established. Note that in deriving Eq. (2.20), we have not required the assumption

_- < At, which has been used previously [37]. The only requirement here is that the dissipative region is well

resolved, such as the case with 5 - 10 grid points in the shock or boundary layers. In the under-resolved

region, the BGK scheme will present a viscous solution for the discontinuous initial data.

In the paper by Chae, Kim, and Rho [4], they basically interpolated gou_ as the nonequilibrium state of

the Chapman-Enskog expansion. Actually, the correct form should be go(u_ + fi_), and only this one could

satisfy the requirement f go(_U + fi_)¢dE = 0.

2.4.2. Collision time. In a well resolved dissipative region, such as the cell size Ax is smaller than

the dissipative length scale determined by the physical viscosity, the collision time _- in the BGK scheme can

be naturally determined by the physical relation

7- = #/p,

where # is the dynamical viscosity coefficient and p is the pressure. The BGK model gives a fixed Prandtl

number Pr = 1.0, which could only make one parameter correct, i.e., the viscosity or heat conduction. A

numerical fix to make both coefficients correct will be addressed next in the Prandtl number fix part. For

the viscosity coefficient, # can take any reasonable form in the determination of T. The simplest case is that

# keeps a constant. In the shock-boundary interaction case, # will take the Sutherland's law,

T _3/2T_+S
= ,

where Too and S are the temperatures with the values Too = 285K and S = 110.4K.

Theoretically, the dissipative structure, such as the shock thickness, is solely determined by the physical

viscosity. The structure should be independent of the cell size and time step used in a numerical scheme.

However, even though the Navier-Stokes equations are accurately solved by the BGK method, if the cell size

is not fine enough to resolve the wave structure, the physical one has to be replaced by a numerical one. For

example, the physical shock thickness is replaced by the numerical cell size. In such a situation, we cannot

solve the Navier-Stokes equations with the original physical viscosity. The effective viscosity in such a case



shouldbea combinationofthephysicalandnumericalones.Differentfrommanyupwindingschemes,the
BGKmethodcannotsimplytaketheapologyto admitthat theimplicitnumericalviscosityis includedin
theunder-resolvedflowregion.SincetheBGKmethodissuchanaccurateNavier-Stokesflowsolver,even
in theunder-resolveddiscontinuityregion,therequiredadditionalnumericalviscositywhichis consistent
with thenumericalshockthicknesshasto beexplicitlyincluded.Sincethejumpin theflowvariablesat
acell interface,seeFig.(4.1),representsbasicallytheunderresolvenessandappearsautomaticallyin high
gradientflowregion,thecollisiontime_-usedinall simulationsin thispapertakesthefollowingform,

(2.21) 7- p + ]pl/Al - pr/Ar] .= -- _A_,

where At is the CFL time step and the second part corresponds to the numerical viscosity. The second

term on the right hand side in the above equation is related to the pressure jump at the cell interface in the

reconstructed initial data. In the continuum flow region, this term will become very small. As shown in the

test cases, this term neither poisons the boundary or shock layer calculations in the well resolved cases, nor

reduces the shock capturing ability of the BGK scheme in the under-resolved region.

The obvious advantage of the BGK method is that it solves a viscous governing equation with an explicit

dissipative coefficient all the time, which avoids the ambiguity of implicit dissipation in many upwinding

schemes due to the wave modeling in the Riemann solvers [31]. Even though the shock jump with a width of

2 or 3 cell size can be captured nicely in the Godunov type schemes, the dissipation there for the construction

of such a shock structure is solely coming from numerics. There is no reason to guarantee that the same

numerical dissipative mechanism works in all physical situations [39]. The BGK scheme explicitly includes

the physical and numerical ones into the algorithm. The fluid behavior in both smooth and discontinuous

regions are described uniformly by the collisional BGK model with an adaptive collision time. The adaptation

of collision time is necessary physically and numerically.

Even the Navier-Stokes equations with an adaptive local viscous coemcient can be solved by the Godunov-

type method, there are still difference between it and the BGK method. The BGK scheme gives a solution

under the general initial condition (Fig.(4.1)) without separating the inviscid and viscous terms, it is dimcult

to design such an unsplitting time accurate Godunov method for the Navier-Stokes equations. Even for

the same mass, momentum, and energy distributions, see Fig.(4.1) again, the kinetic scheme uses a non-

equilibrium state f0 to describe it. The macroscopic description could only see an equilibrium state initially.

2.4.3. Limiting cases. The BGK scheme based on the BGK model is valid for the Navier-Stokes

solution in both 7 < At and 7 > At region. If the collisionless Boltzmann equation ft + ufx = 0 is solved,

the gas distribution function (2.17) goes to

f = fo(x - ut)

(2.22) = [1 - T(ua t + A t) - tua t] H[u]g t + [1 - T(ua _ + A _) - tua _] (1 - H[u])gL

This is a 2nd-order time accurate scheme and is the limiting solution of Eq. (2.17) under the condition _- )> At.

If the above distribution function is further simplified to the 1st-order time accuracy, it becomes

(2.23) f = [1 - T(ua t + At)] H[u]g t + [1 - T(ua _ + A_)] (1 - H[u])g _.

The above distribution is ideally the same as the one used by Chou and Baganoff in their gas-kinetic Navier-

Stokes solver [6]. In their approach, a direct implementation of the Chapman-Enskog distribution of the

Boltzmann equation is used to split the flux. The non-equilibrium state in our case is solely consistent with
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theBGKmodel.FromtheBGKscheme,wecanclearlyunderstandthelimitationof theChou-Baganoff's
KineticFluxVectorSplittingNavier-Stokes(KFVSNS)method.BecauseEq.(2.23)is the limitingcaseof
Eq.(2.17)with7->>At, Eq.(2.23)isonlyvalidfortheNavier-Stokessolutionundersuchalimitingcondition.
Inotherwords,KFVSNSschemeapproachestheNavier-Stokessolutionaccuratelyif thecondition#/p >> At

is satisfied. In #/p < At region, the KFVS NS scheme could behave badly for the Navier-Stokes calculation.

In the later case, the free transport mechanism in the KFVS NS solver regards the time step At as the particle

collision time, subsequently poisons the physical viscous solution. This artifact can be ignored only in the

case At << p/p, where the physical viscous term is dominant. In order to get a more accurate understanding

about the above analysis. In the following, we are going to qualitatively estimate the KFVS NS scheme in

the shock and boundary layer simulations. Suppose we need N _ 10 cells to resolve a NS shock structure or

boundary layer. Since the shock thickness is proportional to the mean free path 18, in the shock layer case

we need 18 = NAx. Then, the condition p/p >> At becomes

pcl_ Ax 1
P_>>At_--P >> _ _N>> M+_'

where c is the sound speed, U is the macroscopic velocity, and M is the Mach number. For any shock

wave with M > 1, the above relation can be satisfied. Therefore, the KFVS NS scheme could give an

accurate NS shock structure [6]. We have also tested both Eq.(2.22) and (2.23) in the shock structure

calculations in Case(l) of the numerical experiment section in the current paper. Both formulations give an

accurate solution. However, if the boundary layer is resolved with the same number of grid points, we have

_-/U_ = NAx. In this case, the condition p/p >> At goes to

1
M N2Ax >> --

x M+I'

where x is the distance between the point in the boundary measured and the leading edge, which is on the

order of N2Ax. Therefore, for the subsonic boundary layer, such as M _ 0.1, the above condition cannot be

satisfied. The KFVS NS scheme cannot be an accurate NS solver in this case. Fig.(4.14) verifies the above

analysis for both Eq.(2.22) and (2.23). Recently, it is interesting to observe that the KFVS NS method could

give consistent results with DSMC simulation in the near continuum regime with the implementation of slip

boundary condition [18]. The current BGK scheme can cover the similar cases.

For the Euler solution, Eq.(2.23) can be further simplified,

(2.24) f = H[u]g I + (1 - H[u])g _,

where the nonequilibrium state is totally removed. This is precisely the KFVS scheme for the compressible

Euler equations [25, 26, 20, 23]. The above KFVS scheme has been well studied and applied to many

physical and engineering problems. A earlier version of the above scheme is the beam scheme, where instead

of Maxwellians the equilibrium states gl and gr are replaced by three Delta functions or particles [27]. As

analyzed recently [30], the Steger-Warming method can be represented as a "beam scheme" too. But, due

to their slight difference in the particle representation, such as the lack of internal energy in the second

"particle" in the Steger-Warming method [30], it is less robust than the beam scheme. The relation between

the beam scheme and the Lattice Boltzmann method is analyzed in [40].

With the above connection between the KFVS scheme and the Steger-Warming method, it is easy to

understand the poor performance of many FVS schemes in the viscous boundary layer calculations [28, 33, 34].

Similar to the KFVS scheme, for the Navier-Stokes solution FVS methods also require #/p >> At. Due to
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thesymmetriclatticeanddiagonaltransport,theLatticeBoltzmannMethod(LBM)isveryfortunateinthis
aspect.It doespresentanaccurateNSsolutionin theincompressiblelimit [5,12].Thereasonforthisisthat
withasymmetriclattice,thefreeparticletransportmechanismfromonenodeto anothernodecouldgenerate
anartificialviscoustermwhichisconsistentwiththeNavier-Stokestermandits coefficientis proportional
to -1 At. Therefore, in a fixed time step case the numerical dissipative term can be absorbed in the physical

one [16]. As a result, the final viscosity coefficient in the Lattice BGK (LBGK) method is proportional to

0- - At/2), where At = 1 is used there. There is no a precise analogue between the finite volume KFVS

scheme and the Lattice Boltzmann method. Due to cell averaging, reconstruction process, and the non-

isotropic transport, such as the lack of diagonal transport, the KFVS scheme has a much more complicated

dissipative mechanism. But, the numerical viscosity coefficient Pn can be still approximately estimated for

a 1st-order KFVS scheme using a simple shear flow model [19], which gives the same result as _- = At in the

LBGK method. The development of a multidimensional upwinding scheme will depend not only on the wave

modeling, but more closely on the mesh construction. More precisely, it depends on whether a numerical

mesh could preserve the isotropic and homogeneous properties of the fluid equations. CFD community

usually has less experience in this aspect. There is something we can learn from the Lattice Boltzmann

method, where the symmetry, invariants, etc., are the main concerns in their algorithm developments. In

some sense, a triangular mesh has more symmetry and isotropic property than a rectangular one.

2.4.4. Prandtl Number Fix. It is well known that the BGK scheme corresponds to unit Prandtl

number. In order to change the above Prandtl number to any realistic value, many attempts have been

proposed. The most well known one is the BGK-Ellipsoidal-Statistical (BGK-ES) collision operator [14],

where the equilibrium state in the BGK model is replaced by an anisotropic Gaussian (without considering

internal variables),

-_(ui - ui)w-l(uj - gj)G = v/det(27rT ) exp ,

where pT = _TRTI + (1 - _-_)p¢ is a linear combination of the stress tensor pC = f(ui - Ui)(uj - Uj)fdE

and of the Maxwellian isotropic stress tensor pRTI. If we extend the current BGK scheme to the above

BGK-ES model, considerable work has to be devoted to capture the time evolution of the above anisotropic

stress tensor.

As mentioned earlier, the BGK model itself can always make one coefficient correct, the viscosity or heat

conduction. In the BGK method, we have obtained explicitly the time dependent gas distribution function

f at the cell interface Eq.(2.17). Therefore, the time-dependent heat flux can be evaluated precisely,

1/(2.25) q= _ (u-U)((u-U) 2+(v-V) 2 +_2) fdE,

where the average velocities U and V are defined by

Then, the easiest way to fix the Prandtl number for the BGK scheme is to modify the energy flux by

subtracting the above heat flux (2.25) and adding another amount with a correct Prandtl number,

(2.26) 5cn¢_E =FE+(prl _ 1)q,

where JoE is the energy flux in Eq.(2.19). This fix can be equally applied to the BGK Discrete Velocity

Model (DVM), where the discrete distribution function f is known [21].
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Inasmoothflowregion,theabovePrandtlnumberfixcanbefurthersimplified.Sincethegasdistribution
functioninsuchacasereducesto f = go [1 - 7-(6_u + fi_) + tfi_], the corresponding heat flux is

/ 1q8 = -7- go(u - Uo)(¢4 - Uo¢2 - Vo¢3 + _(u3 + Vo_))(_u+ _)dZ

= -7- f go(U- Uo)(¢4 - Uo¢2 - Vo¢3)(_u + _)dZ

f

(2.27) = -7- ff go (ctu2¢4 -_ Au¢4 - Vo (au 3 -_- Au 2 ) - Yo (ctu2v --_
.4uv) )dE.

So, in this case we can simply replace q in Eq.(2.26) by the above qs. This is the formula we are going to use

in the Couette flow and the shock boundary interaction cases in the next section. There will not have much

CPU time involved in the above Prandtl number fix, since all momentum in Eq.(2.27) have been obtained

already in the evaluation of the original energy flux FE. The above Prandtl number fix with the evaluation

of qs is similar to the method proposed in [4]. The difference is that all terms related to .4 in Eq.(2.27) was

ignored in [4], which will introduce errors in the unsteady flow calculation. As mentioned earlier, the correct

nonequilibrium state in the BGK scheme should be proportional to (uS + A)g0 instead of uSgo.

The Prandtl number fix (2.26) is a post-processing correction, which is basically a numerical fix. But,

to the Navier-Stokes order, the above fix is physically founded. Theoretically, the BGK-ES model is also

a numerical fix, but it is on the dynamical level. Dynamically, keeping an anisotropic Ganssian for the

equilibrium distribution function seem no any physical basis. The real physical weakness of the BGK model

is that the collision time is independent of particle velocity, this fact is different from the phenomena with

an anisotropic temperature distribution, where the temperature is directionly dependent. If only a correct

Prandtl number is required, there is no reason to construct more and more complicated kinetic models.

2.4.5. Boundary Condition. For the Navier-Stokes equations, the no-slip boundary condition is ob-

tained by creating two ghost cells, where the velocities in the ghost cells are reversed from the velocities

inside the computational domain, see Fig.(4.3). For the adiabatic wall condition, where there is no heat

flow through the boundary, the mass and energy densities in the ghost cells should be symmetric around the

boundary,

P--1 ---- Pl , E-1 = El,

P-2 ---- P2 , E-2 ---- E2,

where -1 and -2 represent the 1st and 2nd ghost cells. Due to the above boundary condition, we can easily

prove that the mass flux Fp = 0 and the heat flux q = 0 at the wall for the BGK scheme.

For the isothermal boundary condition, where the boundary keeps a fixed temperature, such as A0 =

m/(2kTo), in order to keep a 2nd-order accuracy of the scheme at the boundary we have to carefully derive

the flow variables in the ghost cell. In the following, we only consider the case where the nonlinear limiter is

not applied at the boundary cells. Therefore, we only need to construct the flow variables in the first ghost

cell, see Fig.(4.3). In order to have the non-slip condition, we first have

U-1 --- -U1 , V-1 -- -V1,

which gives U0 = 0 and V0 = 0 at the wall. Since the temperature at x = 0 (location of the boundary) has

a fixed value A0, the slope of temperature in space at the boundary is

_--)/_'0 /_1 -- _0
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where _1 is the "temperature" in the first cell inside the computation domain. Therefore, the temperature

in cell -1 becomes

1 0A
_--1 = _0 -- =Ax(_-)0"

2 -UX

Since the energy density in cell -1 is determined by

1 2 1 P-1
(2.28) E-1 -- _p-I(U_I -_-V_21) -_- ,7 - 1 2A_1

the only unknown in the above formulation is P-1. In order to determine P-l, we need to use the condition

that there is no net mass flux transport across the boundary. Since the mass transport in a time step At

can be expressed as (no limiter involved),

which gives

/oAt/Am = 0 = u [1 - 7-(_tu + A) + tA] godtdE

At

= fo /u(l+ tA)godtdE

1 (At) 2 / _tu2god E= At(poUo) -

=-_(At) 2 / 10p OA

10p 10A

7o(_x)O = _(_x)O.

1 0A

- 2_0 (Oxx)°Ax'

The discretized form of the above equation is

(2.29) Pl -- P-1
Pl +P-1

from which P-1 can be derived. The above isothermal boundary boundary condition will be used in the

Couette flow simulation. For a moving isothermal boundary, such as that with a velocity V0, the only change

from the above isothermal boundary condition is that V-velocity in the cell -1 is replaced by

1 0V
P-1 : V0 - x-Ax(_)0,

"Z - Ox

where (OV/Ox)o = 2(V1 - Vo)/Ax.

Another important observation from the kinetic scheme is that it can introduce slip condition easily

through the use of appropriate flux boundary condition. The kinetic scheme can be matched with the

DSMC method in the near continuum regime only after the implementation of the slip condition at the solid

boundaries. The basic formulation of kinetic slip boundary is based on the fact that with the introduction

of gas distribution function, we can explicitly evaluate the amount of particles hitting the boundary, then

according to the accommodation coemcients for the momentum and energy, and the temperature at the wall,

we can re-emit the same amount of particles with a pre-described distribution function. As a result, the

appearance of slip at the boundary is obtained naturally and is consistent with the DSMC type boundary

condition in the near continuum regime due to their common kinetic considerations. More discussion and

the specific application of slip boundary can be found in many kinetic books and papers [22, 17, 3, 2, 6, 18].
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2.5. Artificial viscosity - Godunov - BGK method. In the CFD algorithm development, the

two classical pioneering papers for the shock capturing schemes are by von Neumann and Richtmyer [35]

and by Godunov [8]. Since any physical solution has to be described in the discretized space and time, the

limitation of cell size and time step has to be considered, von Neumann and Richtmyer realized that the

numerical shock thickness needs to be compatible with the cell size. So, the central idea in [35] is that a

viscous governing equation with an enhanced viscosity coefficient has to be solved numerically.

The success in Godunov method is that it introduces a discontinuity in the flow representation. In the

under-resolved flow simulation, due to the large cell size, a discontinuity will appear naturally in the initial

data. The implementation of a discontinuity is much more important than the introduction of the Riemann

solver. The cell interface discontinuity gives a more realistic representation about the physical situation. The

numerical dissipation involved in the discontinuity can hardly be recovered by a delicate viscosity coefficient

[39]. But, for a second order scheme with high-order initial interpolation, the dissipation introduced in

the discontinuity is much reduced, which is not enough to construct a numerical shock wave. From our

experience, we have the following conjecture. If a Generalized Riemann Problem (GRP) is correctly solved

for the Euler equations with the inclusion of initial slopes in the gas evolution stage, see Fig. (4.1), a 2nd-order

(in both space and time) accurate scheme cannot properly capture the numerical shock waves. Even with

the discontinuity at a cell interface, additional numerical dissipation is still needed. As a special case, the

Lax-Wendroff scheme is actually a generalized Riemann solver under the continuous initial condition.

The methodology of the BGK scheme is in somehow to combine the two important issues risen in the

above two methods, (i) a viscous governing equation with an enhanced viscosity coefficient (2.21) is solved,

and (ii) follows the time evolution of the flow distribution from a discontinuious initial data. Both factors

are important for the development of a robust scheme for the fluid simulation. In the smooth region, the

additional numerical viscosity and the discontinuity at the cell interface disappear. The BGK scheme goes

back to the traditional Lax-Wendroff type central schemes for the NS equations.

3. Numerical Experiments. The current scheme has been applied to several test cases ranging from

simple Couette flow to the complicated shock-boundary interaction case. Unless otherwise stated, in all

numerical examples reported, the particle collision time is given by Eq.(2.21), 7 = 1.4. The time step At in

all calculations are determined by CFL number equal to 0.7. All steady state solutions are obtained from

the time accurate BGK solver with a long time integration.

Case(l) Couette Flow with a Temperature Gradient

Couette flow with a temperature gradient provides a good test for the BGK scheme to describe the

viscous heat conducting flow. With the bottom wall fixed, the top boundary is moving at a speed U. The

temperatures at the bottom and top are fixed with values To and T1. The analytic steady state temperature

distribution is

PrEc y
T-To _ y +--Y(1-_),(3.1) T1 - To H 2

where H is the height of the channel, Pr is the Prandtl number, Ec is the Eckert number Ec = U2/Cp(T1 -To),

and Cp is the specific heat ratio at constant pressure.

We have set up the simulation as a 1D problem in the x-direction. There are 20 grid points used in

this direction from 0 to 1 with H = 1.0. The moving velocity at the right boundary in the y-direction is

V1 = 1.0. The initial density and Mach number of the gas inside the channel are 1.0 and 0.1 respectively.

The isothermal no-slip boundary conditions are implemented at both ends. We have tested the current BGK

scheme with a wide range of parameters. (i). specific heat ratio 7 = 7/5, 5/3, and 2.0, (ii). different Prandtl
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numberPr = 0.5,0.72,1.0,1.5,and2.0,(iii). differentcollisiontimeT,whichrangesfrom0.01Atto 1.5At.
Withthevariationsofparameters,allsimulationresultsfit theexactsolutionsverywell.Fig.(4.4)and(4.5)
presentthesolutionsinafewcaseswithdifferentPrandtlnumbersandEckertnumbers.Fromthesefigures,
weseethat thePrandtlnumberfix doesmodifytheheatconductiontermcorrectly.
Case(2)Navier-StokesShockStructure

This isalsoa 1Dcase,whichis mainlyto testthe performanceof theBGKschemefromthe shock
capturingto shockstructurecalculation.Theinitial conditionis thatastationaryshockwithMachnumber
M = 1.5is locatedat x = 0. The viscosity coefficient for the Navier-Stokes equations takes a value p =

0.00025, which corresponds approximately to a shock thickness, 18 _ 1/300. We have tested 6 cases with

different cell size, which ranges from the under-resolved case with Ax = 1/100 to the well resolved case with

Ax = 1/3200.0. The simulation results for density, velocity, and temperature distributions are shown in

Fig.(4.6)-(4.8). From the coarse mesh to fine mesh cases, the shock structure gradually appears and it does

converge to the exact Navier-Stokes solution. In the coarse mesh case, the BGK scheme could capture the

shock jump crisply without any oscillation. Since the physical collision time 7- is determined by Eq.(2.21),

with the change of cell size, the maximum ratio of -fiAt ranges approximately from 0.3 to 10 through these

cases.

We have also tested the schemes based on Eq.(2.22) and (2.23) in the above shock structure calculation.

Both methods give accurate Navier-Stokes solutions in this case, which is consistent with the observation in

[6].

Case(3) Mach 3 Step Problem

The 2D Mach 3 step problem was first proposed by Woodward and Colella [36]. The computation is

carried out on a uniform mesh with 120 x 40 cells, and the cell size used is Ax = Ay = 1/40. In order to test

the viscous effect on the flow structure, we have used different Reynolds number Re = UL/p = 105, 103, 50,

where the length scale is L = 1.0 and the upstream velocity is U = 3.0. The adiabatic slip Euler boundary

condition is imposed at the boundaries in order to avoid the formation of viscous boundary layer. The density

and pressure distributions at different Reynolds number are presented in Fig.(4.9)-(4.11). From these figures,

we can clearly observe the effect of viscosity coefficient on the flow structure, such as the shear layer and

the shock wave structure. Especially, in the case with Re = 50, the shock structure is well resolved. It is

interesting to compare the BGK solution and the DSMC simulations in small Knudsen number regime, such

as the case Fig.(14.29) in [2]. Due to the inclusion of non-equilibrium state and the easy implementation

of kinetic slip boundary condition, the BGK scheme does provide a potential method to connect the Euler

solution with the rarefied solution through the Navier-Stokes at near continuum regime.

Case(4) Laminar Boundary Layer Case

A laminar boundary layer with Mach number M = 0.15 and Re = 105 is tested over a fiat plate. A

rectangular mesh with 120 × 30 grid points is used and the mesh distribution in shown in Fig.(4.12). The

U velocity contours at the steady state are shown in Fig.(4.12). The U and V velocity distributions at the

locations x -- 6.438 and x -- 34.469 are plotted in Fig.(4.13), where the solid lines are the exact Blasius

solutions in the x and y directions. Due to the rectangular mesh, the number of grid points in the boundary

layer at different locations are different. In both locations, the numerical solutions fit the exact solution very

well. Due to the high Reynolds number in this case, the physical collision time v determined by the viscosity

coemcient is much smaller than the time step At, i.e., v (( At. For this case, the previous BGK schemes

could also capture the boundary solution correctly [37]. The results presented in Fig.(12) of [4] about the

BGK scheme are due to the mis-use of the viscous term in the Chapman-Enskog expansion as stated earlier.

16



WhenEq.(2.22)and (2.23)areusedfor the flux calculationin the aboveboundarylayercase,the
simulationresultsareshowninFig.(4.14).ForthetimeaccuratecollisionlessBoltzmannsolution(2.22),the
effectiveviscouscoefficientis approximatelyproportionalto (Pphys -_- /ktp/2), where Pphys is the physical

viscosity coefficient and At/2 is comming from the free transport mechanism. For the lst-order time accurate

and 2nd-order space accurate scheme (2.23), the viscosity coefficient of the scheme is roughly proportional

to (Pphys -- Atp/2), where the forward Euler time steeping introduces an antidiffusive term (_ -Atp).

Therefore, the solution in Fig.(4.14a) is more diffusive, and the solution in Fig.(4.14b) is less diffusive

than the physical solution determined by Pphys. Due to the stretched mesh, initial data reconstruction,

and directional splitting, the motion of the numerical fluid from Eq.(2.22) and (2.23) has a complicated

dissipative nature. The above effective viscosity estimates are only from the physical intuition. As we can

see from Fig.(4.14), the similarity solution is even lost. This means that the effective dissipative coefficient

depends on local mesh size.

Case(5) Shock Boundary Layer Interaction

This test is about the interaction of an oblique shock at an angle 32.6 o with a boundary layer. The Mach

number of the shock wave is M = 2.0 and the Reynolds number for the upstream flow is Re = 2.96 x 105. The

dynamical viscosity # used here is the Sutherland's law, and the Prandtl number is equal to 0.72. A mesh

similar to Fig.(4.12) with 110 x 60 grid points are constructed. The skin friction and pressure distributions

at the surface of the plate is shown in Fig.(4.15), where the data * is the experimental data from [9]. The

pressure contours in the whole computational domain is shown in Fig.(4.16). Due to the high Reynolds

number, the shock structure is not well resolved in this case. So, in terms of the shock, it is only a shock

capturing scheme. But, in terms of the boundary layer, it is a Navier-Stokes solver because the boundary

layer is well resolved. In this test, the condition _- < At is satisfied. The previous BGK schemes work as

well. The numerical solution from the previous BGK scheme is shown in [38]. However, for the KFVS and

FVS schemes, the numerical dissipation could easily poison the boundary layer solution, since their validity

condition is #/p >> At.

4. Conclusion. This paper extends the BGK scheme to include the non-equilibrium state as the initial

gas distribution function. As a result, a consistent BGK scheme for the Navier-Stokes equations is developed,

which is valid in both _- < At and _- > At regions. The new scheme works not only in the viscous shear

or boundary layer cases, where _- < At is satisfied, but also in the construction of a Navier-Stokes shock

structure, where _- >> At. The KFVS NS method and KFVS scheme are the limiting cases of the current

BGK scheme in the case p/p >> At, and both schemes are applicable to simulate the Navier-Stokes equations

only under such a limiting condition. Also, the kinetic boundary condition, Prandtl number fix, as well as

the relation among different schemes, are discussed in this paper.

Following previous papers [24, 42, 41], the present paper shows a progressive development of the BGK-

type schemes. The comprehensive numerical results presented in this paper and the physical and numerical

analysis about the scheme indicate the level of maturity achieved by the gas-kinetic BGK method.

Appendix A

Moments of the Maxwellian Distribution Function. In the gas-kinetic scheme, we need to evaluate

moments of a Maxwellian distribution function with bounded and unbounded integration limits. Here, we

list some general formulas.

Firstly, the Maxwellian distribution for a 2D flow is

g = p(_) _ e-X((u-u)2+(v-Y)2+_2),

17



where_hasK degrees of freedom. Then, by introducing the following notation for the moments of g,

the general moment formula becomes

p(...>= f(...)gd_dvd_,

where n and m are integers, and l is an even integer (owing to the symmetrical property of _). The moments

of (_l) are:

(_2>= (_)

(_4) = (_53K + K(K4_ 2- 1) )

The values of (u _) depend on the integration limits. If the limits are -cx_ to +cx_, we have

(u °) = 1

(u) = U

n+l n
(U hA-2) = U(u hA-l) + _-(u )

When the integral is from 0 to +oc as ("')>o or from -oc to 0 as ("')<o, the error function and the

complementary error function, appear in the formulation. Thus, the moments for u n in the half space are,

(u°)>o = _erfc(-v_U)

1 C-XU2

(_>>o= u(_°>>o+ _-

n+l
(unA-2)> 0 = U(unA-1)> 0 + _-(U )>0"

(u°)<o = _erfc(v/_U)

and,

1 e -XU2

(U)<o= U(u°)<o
2v_

n+l
(unA-2)< 0 = u(unA-1)< 0 -_- _-(un)<o

Same formulation can be obtained for (v "_) by changing U to V in the above moments of (un).

18



Appendix B
Solutionof Matrix Equationb = Ma. In the gas-kinetic scheme, the solution of the following equations

is used many times,

(4.1) /bl)/allb2 = M a2 ,
b3 a3

b4 a4

where b and M are known. The matrix M is from the integration of a Maxwellian, i.e., M_ = f O_O_gd_/P,

M

and has the form

1 U V 131)

U U 2 +1/2£_ UV 132

V UV V 2 +l/2X_ B3 '

B1 B2 133 134

where

131= _(_;2 + v2 + (K + 2)/2x),

1
I32 = _(U 3 + V 2U + (K + 4)U/2)_),

1

133 = _ (V3 + U2V + (K + 4)V/2_)

and

1 ((U2 + V2)2 + (K +4)(U 2 + V2)/£+ ( K2 +6K+8)/4X2)"/34=

The solution of Eq.(4.1) is the following. Define

K+2

R4 = 2b4 - (U 2 + V _ + --_--)bl,

R3 = b3 - Vbl,

the solution is

R2 = b2 - Ubl ,

4)_2 (R4 - 2UR2 - 2VR3),
a4- K+2

a3 = 2hR3 - VR4,

and

a2 = 2XR2 - UR4,

K+2.al = 51 - Ua2 - Va3 - a4(U 2 -_-V2 -_- -_-)"

19
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Xj+ I / 2

(P, P U, PV, E )r

FIG. 4.1. The reconstructed initial conservative variables around a cell interface, from which the nonequilibrium state fo

can be constructed. The BGK scheme is based on the the solution of the coUisional BGK model with the above initial condition.

//.............! ..... ii

"_j+l/2 J+_

FIG. 4.2. The spatial distribution of the initial state fo and the equilibrium state g at t = O. The evaluation of g from

fo is given in Eq.(2.1_)-(2.16). The final gas distribution function f in Eq.(2.17) at the cell interface xj+l/2 is a nonlinear

combination of fo and g.
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F_c. 4.3. Boundary condition. (a). adiabatic boundary condition, where the mass, energy densities are distributed

symmetrically around the boundary and the velocities are reversed. (b). isothermal boundary condition, where the velocity

vector is reversed in the ghost cell, but the mass and energy densities are derived in Eq.(2.28) and (2.29).
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F_c. 4.4. Temperature ratio (T- To)/(T1 -To) in Couette flow. The solid line is the analytic solution given by Eq.(3.1),

and the circles are the numerical results from the BGK scheme. While the Eckert number is fixed to 40, the Prandtl number

takes the values 2.5, 1.0, and 0.72. The collision time "r used in this scheme is about 0.1At.
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FIG. 4.5. Continuation of Fig. (3.4). While the Prandtl number is fixed to 0.5, the Eckert number takes the values 40.0, 20.0,

and 4.0.
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FIG. 4.6. Density distribution of a stationary shock wave with M = 1.5. The kinetic viscosity coefficient of the flow is

z_ = 0.00025, which corresponds to a shock thickness Is _ 1/300. The numerical solution (÷ sign) is obtained from the BGK

scheme with di_erent cell sizes. The solid lines are the exact Navier-Stokes solution. The cell sizes used are (a) 1/100, (b)

1/200, (c) 1/400, (d) 1/800, (e) 1/1600, (f) 1/3200.
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FIG. 4.9. Density and pressure contours in Mach 3 step problem on a mesh with 120 x 40 grid points. The Reynolds

number used in this case is Re--105 w.r.t, the upstream velocity U = 3.0 and the channel height L = 1.0. The solution is very

close to the solution of the Euler solvers. No special treatment is used around the step corner.
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FIG. 4.10. Density and pressure contours in the step problem. The Reynolds number in this case is Re--lO 3.

larger viscosity, the shear layer is smeared.

Due to

27



1

0.8

0.6

0.4

0.2

Re=50

0.5 1 1.5 2 2.5

Density

1

0.8

0.6

0.4

0.2

0.5 1 1.5 2 2.5
Pressure

FIG. 4.11. Density and pressure contours. The Reynolds number is Re=50. The )flow pattern becomes di_erent from the

Euler solutions. The shock structure in front of the step is well resolved.
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FIG. 4.12. (upper) Numerical mesh with 120 × 30 grid points for the boundary layer calculation.
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